The sedimentary flux of dissolved rare earth elements to the ocean

This work highlights the importance of the sedimentary source of dissolved Rare Earth Elements (REE) to the oceanic waters. Indeed, strong subsurface REE concentration maxima are evidenced in pore fluids in core tops collected along the Californian and Oregon margins (above, within and below the oxygen minimum zone of the North-East Pacific). Diffusive flux of neodymium (Nd) out of the sediments matches preceding estimates of the “missing term” of Nd in modeled global Nd budgets. Also interesting, the decoupling between REE and iron fates in these pore fluids…

15 Abbott l
Figure: Site locations and the associated pore fluid profiles. Neodymium (Nd) and iron (Fe) profiles plotted against sediment depth in pore fluids from (clockwise from top left) the Oregon shelf, the Oregon slope, and the California shelf. Filled symbols represent sites unique to this study and open symbols are sites from prior expeditions. Rivers are indicated in blue and labeled. Click here to view the figure larger.

Reference:

Abbott, A. N., Haley, B. A., McManus, J., & Reimers, C. E. (2015). The sedimentary flux of dissolved rare earth elements to the ocean. Geochimica et Cosmochimica Acta, 154, 186–200. doi:10.1016/j.gca.2015.01.010. Please click here to access the paper.

Latest highlights

To Ba or not to Ba: Evaluating water column excess particulate barium as a proxy for water column respiration

Rahman and co-workers examine the relationship between excess particulate barium and organic matter respiration in the water column…

Major controls on the fate of dissolved manganese in the northeastern Indian Ocean

Malla and Singh investigated the key factors controlling dissolved manganese in the northeastern Indian Ocean.

An original approach to assess the particulate trace metal concentrations in seawater

Sohrin and co-workers propose defining particulate trace metal as the difference between total dissolvable and dissolved metals after a long storage of filtered and unfiltered acidified seawater.

Constraining aerosol deposition over the global ocean by the cosmogenic beryllium-7

He and co-workers propose a global estimate of aerosol deposition onto the ocean using the cosmogenic radionuclide beryllium-7.

Rechercher