New trace metal data in the Seas of Japan and Okhotsk

Yuzuru Nakaguchi and his colleagues (2022, see references below) realized full-depth and section distributions of the dissolved (d), total dissolvable (td), and labile particulate (lp) phases of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater samples collected from the Seas of Japan and Okhotsk during the GEOTRACES-Japan program. This allowed these authors to establish that:

  • Although high lpM/tdM ratios suggest active scavenging in the Seas of Japan and Okhotsk, the distributions of trace metals in seawater are distinct between the two seas, reflecting an interplay between the circulation (advection of deep waters from the Pacific Ocean) and margin inputs.
  • In the surface waters of the Sea of Japan, enrichment factor (EF) values of dMn, dCo, dNi, dCu, dZn, dCd, and dPb range within 103–106, implying that these elements are supplied from anthropogenic sources via the atmosphere. In the Sea of Okhotsk, the concentrations of dAl, lpAl, dMn, lpMn, dFe, lpFe, dCo, and lpCo were high owing to supply from continental sources via the Amur River and atmosphere, although less contaminated than in the Sea of Japan.
  • However, trace metal enrichments due to margin inputs and the lateral transport of Mn, Fe, and Co by the Okhotsk Sea intermediate water (OSIW) can be an important source for the North Pacific Intermediate Waters (NPIW).

Figure: Distribution of dissolved Mn (dMn), labile particulate Mn (lpMn), and the lpMn/total dissolvable Mn (tdMn) ratio in the Seas of Japan and Okhotsk. In the Japan Sea, dMn is high in surface water and low in deep water (> 1000 m depth), where lpMn accounts for >70% of tdMn. In contrast, dMn has a maximum at intermediate depths in the Okhotsk Sea. dMn and lpMn around σ0 = 26.9 are entrained into the Okhotsk Sea intermediate water (OSIW).

Reference:

Nakaguchi, Y., Sakamoto, A., Asatani, T., Minami, T., Shitashima, K., Zheng, L., & Sohrin, Y. (2022). Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Seas of Japan and Okhotsk. Marine Chemistry, 241, 104108. Access the paper: https://doi.org/10.1016/j.marchem.2022.104108

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher