Neodymium isotopic signature of the Ross Sea Water characterized

The first seawater neodymium isotopic compositions (εNd) and neodymium concentrations [Nd] profiles across the South Pacific circum-Antarctic fronts have been published recently (Basak et al., 2015, see reference below). Thanks to this exceptional GEOTRACES-compliant data, collected on R/V Polarstern cruise PS75, authors characterize the εNd signature of Ross Sea Bottom Water (εNd ~ -7) and show that meridional Nd concentrations changes follow the density structure of the South Pacific. The latter suggests a lateral transport component for the processes controlling Nd concentrations in the Southern Ocean rather than vertical processes.

15 Basak l
Figure: Distribution of εNd and [Nd] across the South Pacific frontal system (map) from the Ross Sea into the southeast Pacific. Left: Distribution of dissolved εNd; right: Distribution of [Nd] with neutral density contours. Click on the following links to view the figures larger: map, distribution of dissolved εNd and distribution of [Nd].

Reference:

Basak, C., Pahnke, K., Frank, M., Lamy, F., & Gersonde, R. (2015). Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific. Earth and Planetary Science Letters, 419, 211–221. doi:10.1016/j.epsl.2015.03.011

Latest highlights

Major controls on the fate of dissolved manganese in the northeastern Indian Ocean

Malla and Singh investigated the key factors controlling dissolved manganese in the northeastern Indian Ocean.

An original approach to assess the particulate trace metal concentrations in seawater

Sohrin and co-workers propose defining particulate trace metal as the difference between total dissolvable and dissolved metals after a long storage of filtered and unfiltered acidified seawater.

Constraining aerosol deposition over the global ocean by the cosmogenic beryllium-7

He and co-workers propose a global estimate of aerosol deposition onto the ocean using the cosmogenic radionuclide beryllium-7.

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Rechercher