Gadolimium, a Rare Earth Element becoming a human contaminant and tracer of wastewater discharge in the ocean

Gadolinium (Gd) is increasingly used in contrast agents for magnetic resonance imaging. It is therefore released in the wastes of hospitals and research centres.

As a consequence, Hatje and collaborators (2016, see reference below) showed that anthropogenic Gd concentrations in San Francisco Bay increased by an order of magnitude over the past 2 decades, even reaching the northeast Pacific coastal waters. Beyond the fact that such input might be used as tracers of wastewater discharges and hydrological processes, such impressive environmental change suggests that more effective treatment technologies may be necessary to minimise future contamination by chemical elements specially rare earth elements (REE, such as Gd) that are critical for the development of new technologies.

16 Hatje l
Figure: Evolving concentrations of Gd from anthropogenic sources (Gdanth) in San Francisco Bay is a clear example of the changing scenario of REE cycles in coastal environments.

Reference:

Hatje, V., Bruland, K. W., & Flegal, A. R. (2016). Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record. Environmental Science & Technology, 50(8), 4159–4168. doi:10.1021/acs.est.5b04322

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher