Dissolved zinc and silicate decoupling in the North Pacific Ocean

Large-scale distributions of dissolved zinc (Zn) in the western and central subarctic North Pacific Ocean was established as part of the North Pacific GEOTRACES section GP02. Kim and co-workers could figure out interesting Zn behavior in this area:

  • Decoupling between Zn and Silicate in the intermediate water,
  • Zn* values (used to show the variability in the relationship between dissolved Zn and silicate in the ocean) are strongly positive in the intermediate waters of the western and central subarctic North Pacific,
  • Dissolved Zn and soluble reactive phosphorus (SRP) concentrations were relatively high in the intermediate water.

The authors suggest that these particular values observed in the intermediate waters of the subarctic North Pacific result of remineralization from Zn-rich biogenic particles, weak reversible scavenging onto sinking biogenic particles, and sedimentary Zn sources.

17 KimlFigure: (A) Locations of sampling stations in the subarctic North Pacific. (B) Relationships between dissolved Zn and silicate. (C) Zn* as a function of density. The shaded bar represents density range of the intermediate water (26.6–27.5 σθ). (D) Relationships between dissolved Zn and SRP. In (B) and (D), green, red, and black indicate shallow water, intermediate water, and deep water in the subarctic North Pacific, respectively, while blue indicates data from the subtropical North Pacific. Click here to view the figure larger.

Reference:

Kim, T., Obata, H., Nishioka, J., & Gamo, T. (2017). Distribution of Dissolved Zinc in the Western and Central Subarctic North Pacific. Global Biogeochemical Cycles, 31(9), 1454–1468. DOI: https://doi.org/10.1002/2017GB005711

Latest highlights

Contrasting organic carbon  remineralisation rates revealed by particulate excess barium in the North Pacific and South China Sea

Yuan and co-workers quantify organic carbon remineralisation in the twilight zone of the China Sea using particulate excess barium as a proxy…

Sedimentary controls on seawater nickel distributions and nickel isotope compositions: a two steps study

Nickel isotopic mass balance in the ocean stands among the less understood so far…

23 million years of productivity reconstructed in the Central Pacific Ocean using past and modern proxies

Using diverse geochemical proxies, Chu and colleagues analysed an iron–manganese crust to reconstruct central Pacific productivity over the past 23 million years.

Lead isotopes reveal that hydrothermal variability is driven by Sea‐Level change and transient magmatism

De and colleagues present the first millennial-scale reconstruction of hydrothermal variability at a mid-ocean ridge using lead isotopes from iron-manganese coatings…

Rechercher