Why did the concentration of atmospheric carbon dioxide rise so much and so quickly during the last deglaciation? 

During the Last Glacial Maximum, the deep southern Pacific waters were stratified, efficiently accumulating old, CO2 rich waters. Basak and co-authors (2018, see reference below) measured neodymium isotopes in sediment cores that clearly show that when these deep waters became less stratified as the climate warmed they released their carbon which could escape to the atmosphere…what a tempting prospect and beautiful teaser for the forthcoming PAGES-GEOTRACES workshop of December 2018!

 Figure: View from RV Polarstern while collecting sediment samples used in the study by Basak et al. Read more at: https://phys.org/news/2018-02-scientists-theory-role-south-pacific.html#jCp
Credit: Dr. Katharina Pahnke

Reference:

Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R. F., Molina-Kescher, M., Pahnke, K. (2018). Breakup of last glacial deep stratification in the South Pacific. Science, 359(6378), 900–904. http://doi.org/10.1126/science.aao2473

Read more also at: https://phys.org/news/2018-02-scientists-theory-role-south-pacific.html#jCp

Latest highlights

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Rechercher