A treasure of geochemical data to trace ocean circulation, ventilation, mixing, biogeochemical and hydrothermal processes

This treasure is made of approximately 60,000 valid tritium measurements, 63,000 valid helium isotope determinations, 57,000 dissolved helium concentrations, and 34,000 dissolved neon concentrations, including their metadata (geographic location, date and sample depth). It was compiled by Bill Jenkins and co-workers (2019, see reference below) who describe the nature of the data, discuss their quality, list the contributors and pioneers, and of course are giving free access to this huge dataset (https://doi.org/10.25921/c1sn-9631). They also provide some figures illustrating how powerful this new tool is as for example the figure below. 

Authors invite anyone with knowledge of additional tritium, helium, or neon data that has not been included, to please contact wjenkins@whoi.edu with details for inclusion in future versions of the data set.

19 Jenkins
Figure:
(top) A map of helium values at approximately 2500 m depth. (bottom) A map of helium values at approximately 4000 m depth. The values plotted are simply an average of all measurements within a 1’ square between 3750 and 4250 dbar. Depths shallower than 4000 m are masked in gray, and sampling locations are indicated by light gray dots. Click here to view the figure larger.
3He is an extremely rare isotope that is a sensitive tracer of hydrothermal processes. Since it is both stable and chemically inert, it is detectable over great distances in the ocean. The two maps shown above are of the distribution of δ3He, a tracer of hydrothermal activity, at two levels in the deep ocean. The shallower one roughly corresponds to the depth of the mid-ocean ridge system, where the bulk of this hydrothermal injection takes place. One can see the dominant role of the fast-spreading ridges in the eastern Pacific, which drive two massive, westward reaching plumes north and south of the equator. The deeper horizon shows the spreading of δ3He-impoverished bottom waters from the northern and southern polar regions into the deep ocean basins.

Reference:

Jenkins, W. J., Doney, S. C., Fendrock, M., Fine, R., Gamo, T., Jean-Baptiste, P., Key, R., Klein, B., Lupton, J. E., Newton, R., Rhein, M., Roether, W., Sano, Y., Schlitzer, R., Schlosser, P. Swift, J. (2019). A comprehensive global oceanic dataset of helium isotope and tritium measurements. Earth System Science Data, 11(2), 441–454. DOI: http://doi.org/10.5194/essd-11-441-2019

Latest highlights

Science Highlights

Spatial and temporal variability of bioactive trace metals, speciation and organic metal-binding ligands in the eastern Gulf of Mexico

Mellett and Buck present the concentrations of bioactive trace metals (Fe, Cu, Mn, Zn, Co, Ni, Cd, and Pb), Fe-and Cu-binding organic ligands, and electroactive Fe-binding humic substances in the eastern Gulf of Mexico.

03.03.2021

Science Highlights

Thorium-Protactinium fate across the tropical Atlantic Ocean: what reveals the water column-sediment coupling

Twenty seawater profiles and twenty core-top 231-protactinium and 230-thorium analyses were realised by Ng and colleagues along five depth transects across the northern tropical Atlantic open ocean.

18.01.2021

Science Highlights

Constraining Oceanic Copper Cycling through Artificial Intelligence and Ocean Circulation Inverse Model

Using available observations of dissolved copper, artificial neural networks, and an ocean circulation inverse model, authors calculated a global estimate of the 3-dimensional distribution and cycling of dissolved copper in the ocean.

15.01.2021

Science Highlights

Particulate rare earth elements distributions, processes and characterisation of nepheloids in the North Atlantic

Lagarde et al. realised the first basin scale section of particulate rare earth elements concentrations across the North Atlantic Ocean.

06.01.2021

Rechercher