A new model of the oceanic aluminium distribution

Taking into account most of the parameters that govern any trace element’s oceanic behaviour is a challenge, given their number and complexity.

Marco van Hulten and co-workers (2014, see reference below) propose here the most complete model ever written for the oceanic aluminium (Al) distribution. In addition to atmospheric input -which was the only term constraining the Al distribution in a preceding model, see van Hulten et al., 2013-, circulation, sediment re-suspension and biological incorporation by diatoms are considered in this new scheme.

These new sources and sinks are significantly improving the simulated distribution, more specifically a sediment source of Al in the bottom waters of the Northern Atlantic and the velocity fields.

14 vanHulten low

Figure: The dissolved aluminium concentration (nM) of a global model simulation of aluminium. The circles are the observations. The sources in the model comprise the release of Al from dust and from resuspended deep-ocean sediments, the latter depending on the bottom Si concentration. Al is removed by reversible scavenging by biogenic silica. (This figure may be reused, changed and redistributed according to Creative Commons BY-SA. Click here to view the figure larger.)

 

References:

Van Hulten, M. M. P., Sterl, A., Tagliabue, A., Dutay, J.-C., Gehlen, M., de Baar, H. J. W., & Middag, R. (2013). Aluminium in an ocean general circulation model compared with the West Atlantic GEOTRACES cruises. Journal of Marine Systems, 126, 3–23. doi: 10.1016/j.jmarsys.2012.05.005 Click here to access the paper.

Van Hulten, M. M. P., Sterl, A., Middag, R., de Baar, H. J. W., Gehlen, M., Dutay, J.-C., & Tagliabue, A. (2014). On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences, 11(14), 3757–3779. doi:10.5194/bg-11-3757-2014 Click here to acces the paper.

Latest highlights

Oceanic lead concentrations and isotopes mapped using explainable machine learning

Using three machine learning models, Olivelli and her colleagues generated global climatologies of lead concentrations and isotopes…

Dissolved nickel sources: transformation and sinks in the Arabian Sea

Malla and co-authors present an extensive study of the distribution of dissolved nickel in the Arabian Sea.

Linking cadmium cycling to phosphate dynamics in the Indian Ocean: Evidence from GEOTRACES transects

Mishra and Singh determined cadmium and phosphate concentrations along 34 complete vertical profiles in the Indian Ocean.

New software enables global ocean biogeochemical modeling in Python

The newly designed tmm4py software makes biogeochemical modelling more widely accessible.

Rechercher