Using machine learning to accurately simulate the oceanic barium distribution

Mete and colleagues (2023, see reference below) used Machine Learning (ML) to predict the global distribution of oceanic barium (Ba). Models were first trained to predict [Ba] from standard oceanographic observations using GEOTRACES data from the Arctic, Atlantic, Pacific, and Southern oceans. Model predictions of [Ba] were then compared with actual [Ba] data from the Indian Ocean, with the best models achieving a mean absolute percentage error of just 6.0 %. This successful comparison allowed the authors to calculate the global distribution of [Ba], Ba*, and marine barite saturation using data from the World Ocean Atlas. This approach revealed four significant findings: 1) the ocean contains 122±7 Tmol of dissolved Ba; 2) the variability in the barium–silicon relationship is consistent with the biogeochemical characteristics of both elements; 3) marine barite saturation exhibits systematic spatial and vertical variations; 4) taken as a whole, the ocean below 1000 m is at equilibrium with respect to barite. These results have broad implications, both for the modern ocean and for interpreting paleo-records of barite. A data product, which includes a global grid of predictions and the ML model itself, is freely available from BCO-DMO: https://www.bco-dmo.org/dataset/885506.

Figure: Model output showing the dissolved distribution of [Ba], Ba*, and barite saturation state (Ωbarite) in the surface of the Southern Ocean. Barium-star represents the difference between ‘in situ’ (i.e., ML model predicted) and silicate-predicted [Ba], defined as Ba* = [Ba]in situ – (0.54 × [Si] + 39.3). Barite saturation state, Ωbarite, is the ratio between the Ba and sulfate ion product and the in situ barite solubility product. The dashed and dotted lines show the locations of the southern Antarctic Circumpolar Current Front and the Subantarctic Front, respectively.

Reference:

Mete, Ö. Z., Subhas, A. V., Kim, H. H., Dunlea, A. G., Whitmore, L. M., Shiller, A. M., Gilbert, M., Leavitt, W. D., & Horner, T. J. (2023). Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning. Earth System Science Data, 15, 4023–4045. Access the paper: 10.5194/essd-15-4023-2023

Latest highlights

Deep-sea mining, dewatering waste, accidental plumes and their potential consequences on trace metal fates in the North Pacific Ocean

Xiang and his colleagues conducted laboratory incubation experiments that simulate mining discharge into anoxic waters.

Biogeochemical behaviours of barium and radium-226 in the Pacific Ocean

Barium and radium-226 are not just proxies for nutrients and ocean circulation but are themselves marine biogeochemical tracers…

Intrigued by Rare Earth Elements and neodymium isotopes? A review for the curious

Vanessa Hatje and a group of Rare Earth Element (REE) specialists propose an exhaustive review on the behaviour of REE.

North-South section of bioactive cadmium, nickel, zinc, copper and iron along GEOTRACES transect GP19 in the Pacific Ocean

Zheng and his colleagues propose the first full sections of the simultaneous dissolved distributions of five nutrient-type trace metals in the western South Pacific Ocean.

Rechercher