The biogeochemical ventures of dissolved iron and manganese across the Arctic Ocean

The spatial distributions and biogeochemical cycling of dissolved Fe (dFe) and dissolved manganese (dMn) across the Arctic Ocean were established during summer and fall 2015. The Canadian GEOTRACES transect extended from the Canada Basin (CB) to the Labrador Sea (LS) via the Canadian Arctic Archipelago (CAA).

The surface, subsurface and deep water distributions for both metals are controlled by i) a large variety of processes and ii) a complex balance between sources and sink (river inputs in surface, advective transports and particle remineralization at depth). For example, the highest concentrations are measured in surface waters of the CAA and the CB because these regions are strongly influenced by river inputs. Contrastingly, in the highly productive Baffin Bay and Labrador Sea, the surface waters are markedly depleted in dFe and dMn while organic matter remineralization likely acts as a notable source of these elements to deep waters.

The figure below summarizes the complexity of the processes governing the fate of these elements in the Canadian Arctic Ocean.

Figure: a) Sampled stations for Fe and Mn during the Canadian Arctic GEOTRACES cruises, bathymetry and schematic of water circulation. b) Conceptual scheme displaying the concentrations and key processes (e.g. freshwater and sedimentary inputs, remineralization and scavenging removal) controlling the distributions of dissolved Fe and Mn in the Canadian Arctic Ocean.

Reference:

Colombo, M., Jackson, S. L., Cullen, J. T., & Orians, K. J. (2020). Dissolved iron and manganese in the Canadian Arctic Ocean: On the biogeochemical processes controlling their distributions. Geochimica et Cosmochimica Acta, 277, 150–174. DOI : https://doi.org/10.1016/j.gca.2020.03.012

Latest highlights

Science Highlights

Loss of old Arctic sea ice increases methylmercury concentrations

Researchers from the SCRIPPS, the Stockholm Natural Museum and the Mediterranean Institute of Oceanography show the importance of sea ice composition on methylmercury budgets

02.09.2020

Science Highlights

Estimating Atmospheric Trace Element Deposition Over the Global Ocean

A recently developed method based on the natural radionuclide Be-7 has provided a means to estimate the bulk atmospheric trace element deposition velocity

Science Highlights

Dissolved gallium unravels Pacific and Atlantic waters in the Arctic Ocean

Whitmore and co-workers demonstrate that the dissolved gallium distribution provide a better water source deconvolution than the nutrient tracers

22.07.2020

Science Highlights

Precise estimate of the mercury export from the Arctic to the Atlantic Ocean

Using new observations acquired during GEOTRACES Arctic cruises, a refined arctic mercury budget has been established

21.07.2020

Rechercher