Upwelled hydrothermal iron stimulates massive phytoplankton blooms in the Southern Ocean

Joint Science Highlight with US-Ocean Carbon & Biogeochemistry (US-OCB).

In a recent study, Ardyna et al (2019, see reference below) combined observations of profiling floats with historical trace element data and satellite altimetry and ocean color data from the Southern Ocean to reveal that dissolved iron (Fe) of hydrothermal origin can be upwelled to the surface. Furthermore, the activity of deep hydrothermal sources can influence upper ocean biogeochemical cycles of the Southern Ocean, and in particular stimulate the biological carbon pump.

Figure: Southern Ocean phytoplankton blooms showing distribution, biomass (circle size) and type (color key). Adapted from Ardyna, et al., 2019. Click on the figure to view it larger.

Reference:

Ardyna, M., Lacour, L., Sergi, S., d’Ovidio, F., Sallée, J.-B., Rembauville, M., Blain, S., Tagliabue, A., Schlitzer, R., Jeandel, C., Arrigo, K.R., Claustre, H. (2019). Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 10(1), 2451. DOI: https://doi.org/10.1038/s41467-019-09973-6

Latest highlights

North-South radium-228 section in the Pacific Ocean

Moore and colleagues present results from radium-228 along the U.S. GEOTRACES Pacific Meridional Transect (GP15).

Strong lithogenic imprints in the Indian Ocean waters

Ueki and co-authors reported the first sectional distributions of zirconium, hafnium and niobium along a north-source track in the Indian Ocean.

The development of the modern Antarctic Circumpolar Current occurred much later than previously thought!

This study is challenging the belief that the onset of the Antarctic Circumpolar Current was solely triggered by the opening and deepening of Southern Ocean Gateways.

A dynamic iron cycle in Peru

Gu and colleagues explore the temporal variation of iron over 11 cruises along the Peruvian shelf.

Rechercher