scor

FacebookTwitter

Hayes and co-workers are back with another rich contribution, based on dissolved 232-thorium (232Th) and 230-thorium (230Th) (click here to access previous highlight from the same author).

The game is to use the fact that both isotopes have readily different sources to the ocean, while both are supposed to be removed by particles. 232Th is lithogenic, therefore introduced by external sources (dust, rivers, etc.), while 230Th is internally produced as decay product of the soluble 234-uranium (234U). Playing with these differences, together with a large set of data on seven water column profiles in the North Pacific, the authors demonstrate that:

  • both tracers can be used to estimate dust fluxes over a given oceanic area. They show that this flux is twice the modelled one in the subarctic part of the section whereas it is more consistent in the subtropics.
  • both tracers are very good proxies for the estimate of boundary exchange processes in deep water along the North Pacific margins which seems to be quite significant in this area.

Hayes 2Figure: Eolian dust fluxes to the North Pacific as estimated from dissolved 232Th-230Th measurements (represented by circles) and from model estimates constrained largely from satellite optical depth (represented by the colormap from Mahowald et al. 2005). The same colour codes have been used for the circles and the colormap.
Click here to see the figure larger.

References:

Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Serno, S., Winckler, G., & Gersonde, R. (2013). Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes. Earth and Planetary Science Letters, 383, 16–25. DOI: 10.1016/j.epsl.2013.09.025. Click here to access the paper.

Mahowald, N. M., A. R. Baker, G. Bergametti, N. Brooks, R. A. Duce, T. D. Jickells, N. Kubilay, J. M. Prospero, and I. Tegen (2005), Atmospheric global dust cycle and iron inputs to the ocean, Global Biogeochem. Cycles, 19, GB4025, DOI:10.1029/2004GB002402. Click here to access the paper.

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.