scor

FacebookTwitter

New revelations on boundary scavenging in the North Pacific

Thorium (Th) and protactinium (Pa) are very efficient tracers of particle dynamics in the ocean. More particularly, their relative distributions inform on the intensity of "scavenging", in other words, the processes that remove dissolved elements from seawater by their precipitation or adsorption on particles. Thanks to 12 new profiles in the North Pacific, Hayes and co-authors observe a much larger relative difference in scavenging intensity between the Subtropical gyre and Subarctic Pacific gyre than within each of these regions. This effect is greater for Pa than for Th, likely reflecting the fact that biogenic silica, a phase produced by diatoms which has a strong affinity for Pa, is much more prevalent in the North. While highlighting the role of biogeography, the study also finds that in the deep ocean, manganese oxides, an inorganic phase, may play an additional role in Pa scavenging.

13 Hayes lFigure: Simplified figure showing scavenging intensity in the Pacific Ocean.
Please click here to view the figure larger.

Reference:

Hayes, C. T., Anderson, R. F., Jaccard, S. L., François, R., Fleisher, M. Q., Soon, M., & Gersonde, R. (2013). A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters, 369-370, 86–97. doi:10.1016/j.epsl.2013.03.008. Click here to access the paper.

Filter by Keyword

Aerosol Inputs Aerosols Aluminium Analysis Anoxia Antarctic Geology Arctic Ocean Arsenic Artificial Intelligence Atlantic Ocean Atmospheric Dynamic Barium Barium Isotopes Behavior Benthic Beryllium BioGEOSCAPES Biological Pump Black Sea Boundary Exchange Boundary Scavenging Budget Cadmium Cadmium Isotopes Cadmium Sulfide Chromium Chronium Isotopes Circulation Climate Change CO2 Degassing Coastal Area Cobalt Copper Copper Isotopes Cycles Data Compilation Deep Water Dissolved Concentrations Distribution Distribution Coefficient Ecosystem Eddy Kinetic Energy Environmental Change Estuaries Experiments Export Fluxes Fate Fertilisation Fractionation Gadolinium Gallium Global Scale Hafnium Hafnium Isotopes Helium Helium Isotopes Hydrothermal Hypoxia Ice ICPMS Indian Ocean Inputs Intercalibration Intercomparison International Polar Year Iodine Iron Iron Isotopes Iron Sulfide Isotopes Land Ocean Inputs Lanthanum Lead Lead Isotopes Limitation Lithogenic Macronutriments Mammals Manganese Mediterranean Sea Mercury Mesopelagic Mesoscale Transport Methylmercury Microbial Micronutriments Modelling Multiple TEIs Neodymium Neodymium Isotopes Nepheloids Nickel Nitrate Nitrogen Nutrients Organic Matter Osmium Oxygen Pacific Ocean Paleoceanography Paleocirculation Particle Fluxes Particles Particulate Organic Carbon Phosphate Phosporus Phytoplankton Pitzer Equations Precipitation Procedure Processes Productivity Protactinium Protocol Proxy Radium Radium Isotopes Rare Earth Elements Red Sea Remineralization Residence Times River SAFE Samples Scandium Scavenging Sea Ice Sediments Shelf Silicon Silicon Isotopes Southern Ocean Speciation Submarine Ground Water Discharge Surface Waters Thorium Thorium Isotopes Thorium-Protactinium Time Series Total Hg Transmissiometer Uranium Uranium Isotopes Yttrium Zinc Zinc Isotopes

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.