scor

FacebookTwitter

Using the three thorium isotope toolbox to probe the particle dynamic within an East Pacific Rise hydrothermal plume

The insoluble radiogenic isotopes of thorium (Th) are produced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. These three isotopes are radioactive and their half-lives vary from days (234Th) to years (228Th) to tens of thousands of years (230Th). Combining their known production and decay rates with their insolubility makes them excellent tools to study the particle dynamics on a wide range of timescales.

This toolbox was successfully used by Pavia and co-workers (2019, see reference below) to study particle-dissolved exchange within the hydrothermal plume detected during the GEOTRACES GP16 cruise in the southeast Pacific Ocean. The goal of these authors was to unravel how hydrothermal activity affects the different steps characterizing the scavenging processes, i.e. adsorption and desorption onto particles, particle aggregation, sinking, and eventual sedimentation.

Their main conclusions are that: 1) particle aggregation was occurring much more rapidly in the plume, 2) hydrothermal scavenging is partially irreversible, 3) off-axis hydrothermal Th scavenging rate of 0.15yr−1, value deduced from a modelling and 4) 230Th is surprisingly more depleted than the two other isotopes. This likely reflects progressive scavenging in this region of intense hydrothermal activity and underlines the complexity of interpreting the GP16 hydrothermal plume as being solely a local phenomenon.

19 Pavia

Figure: Depletion observed in three thorium isotopes in the hydrothermal plume observed downstream of the East Pacific Rise on the GEOTRACES GP16 section in the South Pacific Ocean. Plots A), B), and C) show the depletion in each thorium isotope at stations 18 (closest to the ridge axis) to station 21 (furthest from the ridge axis). The depletion increases with increasing half-life of thorium isotope, going from 234Th (half-life = 24.1 days) showing the least depletion, followed by 228Th (half-life = 1.91 years), with 230Th (half-life = 75,587 years) the most depleted. D) Shows the map of the study area, with solid white arrows proportional to current speeds at the plume depth of 2500m, and the white dashed arrow displaying the proposed flowpath of the hydrothermal plume observed in the study, along which thorium is progressively removed from the deep ocean. Click here to view the figure larger.

Reference:

Pavia, F. J., Anderson, R. F., Black, E. E., Kipp, L. E., Vivancos, S. M., Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P., Edwards, R. L. (2019). Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth and Planetary Science Letters, 506, 146–156. DOI: http://doi.org/10.1016/J.EPSL.2018.10.038

Isotopes Atlantic Ocean Iron Global scale Pacific Ocean Neodymium Neodymium isotopes Particles Multiple TEIs Southern Ocean Zinc Thorium Land-ocean inputs Hydrothermal Arctic Ocean Analysis Modelling Circulation Cadmium Land-ocean input Thorium isotopes Data compilation Indian Ocean Cycles Mercury Radium Speciation Barium Silicon Aerosol input Iron isotopes Copper Manganese Hypoxia Radium isotopes Phosphate Cobalt Rare Earth Element Lead Lead isotopes Aluminium Protocol Mediterranean Sea Aerosols Boundary Exchange Protactinium Thorium-Protactinium Paleoceanography Environmental change Organic matter Nepheloids Aerosol Cadmium isotopes Zinc isotopes International Polar Year Uranium Microbial Rare Earth Elements Benthic Limitation Phytoplankton Oxygen Silicon isotopes Chromium Chronium isotopes BioGEOSCAPES Particulate Organic Carbon Export fluxes Residence times Methylmercury Surface waters Helium Paleocirculation Proxy Nickel Remineralization Nitrogen Sediments Climate change Lanthanum Yttrium Scandium Intercalibration Lithogenic Macronutriments Micronutriments Hafnium Hafnium isotopes Ice Sea ice Helium isotopes Particle fluxes Barium isotopes Biological pump Iodine Uranium isotopes Artificial Intelligence Cadmium sulfide Antarctic geology Beryllium Mammals Phosporus Time Series Productivity Red Sea Distribution coefficient Mesoscale transport Fertilisation Processes Estuaries Mesopelagic Anoxia Black Sea ICPMS Ecosystem CO2 degassing Transmissiometer Eddy Kinetic Energy Fate Scavenging Fractionation Distribution Iron sulfide Precipitation Shelf Inputs River Pitzer equations Gadolinium Intercomparison Coastal area Gallium Submarine Ground Water Discharge Cooper isotopes Total Hg Fertilization Experiments Behavior Budget Atmospheric Dynamic SAFE samples Boundary Scavenging Procedure Osmium Arsenic Aerosols input Nitrate Nutrients Deep water Copper isotopes Dissolved concentations

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.