scor

FacebookTwitter

Contrasting lithogenic inputs from North Atlantic to North Pacific Oceans traced by thorium isotopes

Dissolved thorium (Th) isotopes and iron (Fe) are used to document the transfer of lithogenic material to the ocean.

Two contrasting areas are compared: the Atlantic Ocean around Barbados Islands, under the influence of the Amazon plume and dust of Saharan origin, and the remote North East Pacific Ocean, far from dust inputs. 

The Amazon is a substantial source of dissolved 232Th and iron (Fe) to the low-latitude Atlantic Ocean, even as far away a 1900 km from the river’s mouth. This complicates the use of 232Th as a dust proxy in river-influenced ocean regions.

A striking feature is the similarity in Fe concentrations from the North Pacific to the North Atlantic Oceans, while 232Th reveals a dust flux six fold higher in the later. This supports the idea that dissolved Fe distribution is highly buffered in the ocean.

17 Hayes l
Figure: The North Atlantic Ocean receives a much larger input of mineral dust blown from the continents than does the remote North Pacific. This contrast is seen clearly in the seawater concentrations of dissolved Thorium-232, the isotope of thorium that is enriched in the continental crust (left panel). The distribution of Fe, however, is much more homogeneous between these two ocean basins (right panel), despite that fact that continental dust is the major source of Fe in these areas. We think this is because Fe is highly buffered in the ocean by a combination of biological uptake, adsorption onto particles, and complexation by organic molecules, or ligands. See our paper for the colloidal nature of these dissolved metals and for evidence of a large input of metals from the Amazon River. Click here to view the figure larger.

Reference:

Hayes, C. T., Rosen, J., McGee, D., & Boyle, E. A. (2017). Thorium distributions in high- and low-dust regions and the significance for iron supply. Global Biogeochemical Cycles, 31, 1–20. DOI: 10.1002/2016GB005511

 

Isotopes Atlantic Ocean Iron Global scale Pacific Ocean Neodymium Neodymium isotopes Particles Multiple TEIs Southern Ocean Zinc Thorium Land-ocean inputs Hydrothermal Arctic Ocean Analysis Modelling Circulation Cadmium Land-ocean input Thorium isotopes Data compilation Indian Ocean Cycles Mercury Radium Speciation Barium Silicon Aerosol input Iron isotopes Copper Manganese Hypoxia Radium isotopes Phosphate Cobalt Rare Earth Element Lead Lead isotopes Aluminium Protocol Mediterranean Sea Aerosols Boundary Exchange Protactinium Thorium-Protactinium Paleoceanography Environmental change Organic matter Nepheloids Aerosol Cadmium isotopes Zinc isotopes International Polar Year Uranium Microbial Rare Earth Elements Benthic Limitation Phytoplankton Oxygen Silicon isotopes Chromium Chronium isotopes BioGEOSCAPES Particulate Organic Carbon Export fluxes Residence times Methylmercury Surface waters Helium Paleocirculation Proxy Nickel Remineralization Nitrogen Sediments Climate change Lanthanum Yttrium Scandium Intercalibration Lithogenic Macronutriments Micronutriments Hafnium Hafnium isotopes Ice Sea ice Helium isotopes Particle fluxes Barium isotopes Biological pump Iodine Uranium isotopes Artificial Intelligence Cadmium sulfide Antarctic geology Beryllium Mammals Phosporus Time Series Productivity Red Sea Distribution coefficient Mesoscale transport Fertilisation Processes Estuaries Mesopelagic Anoxia Black Sea ICPMS Ecosystem CO2 degassing Transmissiometer Eddy Kinetic Energy Fate Scavenging Fractionation Distribution Iron sulfide Precipitation Shelf Inputs River Pitzer equations Gadolinium Intercomparison Coastal area Gallium Submarine Ground Water Discharge Cooper isotopes Total Hg Fertilization Experiments Behavior Budget Atmospheric Dynamic SAFE samples Boundary Scavenging Procedure Osmium Arsenic Aerosols input Nitrate Nutrients Deep water Copper isotopes Dissolved concentations

 Data Product (IDP2017)

eGEOTRACES Atlas

 Data Assembly Centre (GDAC)

 Outreach

Subscribe Mailing list

Contact us

To get a username and password, please contact the GEOTRACES IPO.

This site uses cookies to offer you a better browsing experience. Find out more on how we use cookies and how you can change your settings.