Partition coefficients of trace elements: from the ocean to the models

M. Roy-Barman

LSCE, Avenue de la Terrasse, 91198 Gif sur Yvette, France
Matthieu.Roy-Barman@lsce.ipsl.fr
Outline:

- what is a K_d?
- Thorium
- Neodymium
- K_d in models
- recommendations
$K_d = \frac{\text{mass of particulate tracer per mass of particles}}{\text{mass of dissolved tracer per volume of seawater}}$

depends on the particle composition

$K = \frac{\text{mass of particulate tracer per volume of seawater}}{\text{mass of dissolved tracer per volume of seawater}}$

depends on the particle composition
the particle concentration

$K = K_d \times C_p$
Particle concentration effect on K_d due to colloids

Honeyman et al., 1988
^{230}Th, ^{234}Th
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chase a,b,c, Robert F. Anderson a,b, Martin Q. Fleisher a,
Deter W. Kuik b,c,

\[
\text{CaCO}_3 + \text{Litho} \\
2002
\]

Sediment trap data

![Graph showing the relationship between % opale and % CaCO_3, with data points for AESOPS, MAB, other, and EqPac.]
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chasea,b,\ast, Robert F. Andersona,b, Martin Q. Fleishera, Peter W. Kubikc

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean

Shangde Luod, Teh-Lung Ku
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chasea,b,*, Robert F. Andersona,b, Martin Q. Fleishera, Peter W. Kubikc

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ^{230}Th, ^{231}Pa and ^{10}Be in the ocean

Shangde Luoa, Teh-Lung Ku

Discussion

Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ^{230}Th, ^{231}Pa and ^{10}Be in the ocean” by S. Luo and T.-L. Ku

Zanna Chasea,*, Robert F. Andersonb
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chasea,b,*, Robert F. Andersona,b, Martin Q. Fleishera, Peter W. Kubikc

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean

Shangde Luo*, Teh-Lung Ku

Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean” by S. Luo and T.-L. Ku

Zanna Chase*, Robert F. Andersonb

Discussion

Reply to Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean”

Shangde Luo*, Teh-Lung Ku
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chase, Robert F. Anderson, Martin Q. Fleisher, Peter W. Kubik

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean

Shangde Luo, Teh-Lung Ku

Discussion

Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean” by S. Luo and T.-L. Ku

Zanna Chase, Robert F. Anderson

Discussion

Reply to Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean”

Shangde Luo, Teh-Lung Ku
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chasea,b,*, Robert F. Andersona,b, Martin Q. Fleishera, Peter W. Kubikc

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating \(^{230}\text{Th},^{231}\text{Pa}\) and \(^{10}\text{Be}\) in the ocean

Shangde Luo*, Teh-Lung Ku

Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating \(^{230}\text{Th},^{231}\text{Pa}\) and \(^{10}\text{Be}\) in the ocean” by S. Luo and T.-L. Ku

Zanna Chase*, Robert F. Andersonb

Controversy over the relationship between major components of sediment-trap materials and the bulk distribution coefficients of \(^{230}\text{Th},^{231}\text{Pa}\), and \(^{10}\text{Be}\)

Yuan-Hui Li*

Discussion

Reply to Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating \(^{230}\text{Th},^{231}\text{Pa}\) and \(^{10}\text{Be}\) in the ocean”

Shangde Luo*, Teh-Lung Ku

Discussion
The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean

Zanna Chasea,b,\dagger, Robert F. Andersona,b, Martin Q. Fleishera, Peter W. Kubikc

On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ^{230}Th, ^{231}Pa and ^{10}Be in the ocean

Shangde Luoa, Teh-Lung Ku

Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ^{230}Th, ^{231}Pa and ^{10}Be in the ocean” by S. Luo and T.-L. Ku

Zanna Chasea,b,\dagger, Robert F. Andersonb

Reply to Comment on “On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating ^{230}Th, ^{231}Pa and ^{10}Be in the ocean”

Shangde Luoa, Teh-Lung Ku

Controversy over the relationship between major components of sediment-trap materials and the bulk distribution coefficients of ^{230}Th, ^{231}Pa, and ^{10}Be

Yuan-Hui Lia

Radionuclide fluxes in the Arabian Sea: the role of particle composition

J.C. Scholtena,\dagger, J. Fietzkea,1, A. Manginib, P. Stoffersa, T. Rixenc, B. Gaye-Haaked, T. Blanze, V. Ramaswamyf, F. Sirockoa, H. Schulzg, V. Ittekkoth

The influence of particle composition on thorium scavenging in the NE Atlantic ocean (POMME experiment)

M. Roy-Barmana,\dagger, C. Jeandelb, M. Souhautb, M. Rutgers van der Loeffc, I. Vogeg, N. Leblondd, R. Freydierec
Sediment trap data

intercorrelation problem: mixture of large and small particles
How to choose the right phase?

Roy-Barman et al, 2005
Kd (Th)$_{\text{MnO}_2}$ variability

Partition coefficient of Th between lithogenic particles, MnO$_2$ and seawater.

<table>
<thead>
<tr>
<th></th>
<th>$K_{\text{d-litho}}^{\text{Th}}$ (107 ml/g)</th>
<th>$K_{\text{d-MnO}_2}^{\text{Th}}$ (1010 ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYFAMED 1000 m, main correlation (this work)</td>
<td>0.8 ± 0.2</td>
<td>1.1 ± 0.4</td>
</tr>
<tr>
<td>DYFAMED 1000 m, winter samples (this work)</td>
<td>0.42 ± 0.04</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Eastern North Atlantica</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Eastern North Atlanticb</td>
<td>0.5–10</td>
<td>0.7–4.2</td>
</tr>
<tr>
<td>North Atlanticc</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Equatorial Pacific and Southern Oceand</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Equatorial Pacific and Southern Oceane</td>
<td>20</td>
<td>3.5</td>
</tr>
<tr>
<td>Panama Basinf</td>
<td>2–4</td>
<td>0.6–3.7</td>
</tr>
</tbody>
</table>

K$_d$ varies by a factor 60 could be used for modelling

Roy-Barman et al., 2009
What about organic matter?

Rutgers van der Loeff et al., 2002

Roberts et al., 2009
Timescale problem?

Roy-Barman et al., 2005
Timescale problem?
equilibrium versus disequilibrium

Coppola et al., 2006

But

not confirmed by Venchiarutti et al., 2011
Do all phases have the same affinity for 230Th?
Sorption experiment

Geibert et al., 2002
Sorption experiment

<table>
<thead>
<tr>
<th>Mineral or organic phase</th>
<th>log K_d</th>
<th>Referencesa</th>
<th>$-\log C_p$</th>
<th>f_p (predicted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>3–5</td>
<td>1</td>
<td>8</td>
<td>$<10^{-3}$</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>4–5</td>
<td>2, 3</td>
<td>8</td>
<td>$<10^{-3}$</td>
</tr>
<tr>
<td>Al$_2$O$_3$/clays</td>
<td>5.6–6.8</td>
<td>4, 8</td>
<td>9</td>
<td>$<10^{-2}$</td>
</tr>
<tr>
<td>FeOOH</td>
<td>5.1–5.8</td>
<td>3, 5</td>
<td>9</td>
<td>$<10^{-3}$</td>
</tr>
<tr>
<td>MnO$_2$</td>
<td>4.4–7.6</td>
<td>3, 6, 8</td>
<td>10</td>
<td>$<10^{-2}$</td>
</tr>
<tr>
<td>APS-EPS at 100% PS</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Relatively low affinity of inorganic phases
High affinity for organic matter.

Santchi et al., 2006
Particle concentration effect for sorption experiments of 234Th on Mn oxydes
Particle concentration effect for sorption experiments on Mn oxydes
Particle concentration effect for sorption experiments on Mn oxydes

Guo et al, 2009
Particle concentration effect for sorption experiments on Mn oxydes

Geibert et al, 2009
Guo et al, 2009

Log Kd Th for Mn oxydes vs Log Particulate Mn oxydes concentration

Log particle concentration (μg/l)
Particle concentration effect for sorption experiments on Mn oxydes

Kd Th for Mn oxydes

Log Particulate Mn oxydes concentration

Geibert et al, 2009

Guo et al, 2009

Suspended marine particles
Particle concentration effect for sorption experiments on Mn oxides

Geibert et al, 2009

Guo et al, 2009
Fractionation coefficient

\[F_{\text{Pa/Th}} = \frac{K_{d_{\text{Pa}}}}{K_{d_{\text{Th}}}} = \frac{K_{\text{Pa}}}{K_{\text{Th}}} \]

Kretshmer et al., 2011

Guo et al., 2002
Neodymium
Determination K_d for Nd: 2 methods

Subtracting the lithogenic fraction

$$X_{\text{auth}} = 1 - \left(\frac{\text{Al}}{\text{REE}} \right)_{\text{bulk}} \cdot \left(\frac{\text{REE}}{\text{Al}} \right)_{\text{lith}}$$
Kuss et al, 2001

leaching

$$X_{\text{auth}} = \frac{\left(\varepsilon_{\text{Nd}} \right)_{\text{bulk}} - \left(\varepsilon_{\text{Nd}} \right)_{\text{lith}2}}{\left(\varepsilon_{\text{Nd}} \right)_{\text{auth}} - \left(\varepsilon_{\text{Nd}} \right)_{\text{lith}2}}$$
Tachikawa et al., 2004
Determination K_d for Nd: Comparison of the 2 methods

Tachikawa et al., 1999
Do all phases have the same affinity for Nd?

- Low affinity for organic matter (Elderfield, 1981, Fu et al., 2000)
- Similarities with 230Th

Adapted from Roy-Barman et al., 2005 and Guieu et al., 2004
Determination K_d for Nd:
Do all phases have the same affinity for Nd?

Carbonate versus bSi

Akagi et al., 2011
Which phases carry 232Th and Nd?

< 30% lithogenic Th and Nd is carried by accessory phases. The remaining is dispersed in major phases (clays)?

Marchandise et al., in prep.
K_d in models

what appears in models
(~ 30-50 m/y)

$$\frac{d[\text{tracer}]_{\text{total}}}{dt} = \text{Source} - \frac{d(S \times K_d \times C_p [\text{tracer}]_d)}{dt}$$
Nd modeling: the role of particles

Adapted from Arsouze et al., 2009

<table>
<thead>
<tr>
<th>Particles composition</th>
<th>Boundary input</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>biSi/CaCO$_3$/litho</td>
<td>No</td>
<td>Arsouze et al., 2007</td>
</tr>
<tr>
<td>OM/litho</td>
<td>yes</td>
<td>Jones et al., 2008</td>
</tr>
<tr>
<td>OM/litho</td>
<td>yes</td>
<td>Oka et al., 2009</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>Rempfer et al., 2011</td>
</tr>
</tbody>
</table>
\(^{230}\)Th argues against strong change of the Th bearing phase flux

\[^{230}\)Th and Nd are correlated so Nd bearing phases cannot be strongly dissolved.
Nd modeling: the role of particles

Sidall et al., 2008

Arsouze et al., 2009
Conclusions and recommendations

- **Obtaining K_d from suspended particles**
 - Complete analysis of the suspended particles (including major phases!!)
 - Difficulties to measure small 230Th quantities (intercalibration)

- **Better characterization of the particles**
 - Complete analysis of the particles
 - Phases constituting the particles
 - Profils/sections of carbonate, bSi, POC…

- **Equilibrium versus adsorption/desorption model**
 - Th based estimation of k_1 and k_{-1}
 - Ambiguity with mixed layer depth