New scientific results

The 224Ra/228Th disequilibrium method is extended to quantify benthic fluxes of Fe from coastal sediments. Benthic Fe flux estimates along the China coastal seas are compiled and a correlation of benthic Fe fluxes and water depth in China coastal seas is identified.

Seasonal hypoxia proxy on benthic foraminifera shells: the possible use of Mn/Ca ratios in benthic foraminifera as a proxy for hypoxia have been examined, which has increasingly become a serious environmental issue in many coastal zones. Results showed that a relatively simple physical cleaning approach coupled to LA-ICP-MS provided excellent results on single specimens. Using the LA methodology, Mn/Ca ratios from living Florilus decorus (F. decorus) specimens from stations in the Yangtze River Estuary are analyzed, and Mn/Ca ratios in penultimate chambers of living benthic foraminifera are found to be sensitive to bottom water DO concentrations. Significant variations of both Mn/Ca and Mg/Ca ratios from different chambers within foraminiferal shell specimens are observed. These fluctuations are likely a response to changing ambient water DO and temperature during the specimen’s growth history. Combined use of foraminiferal Mn/Ca ratios together with other proxies could provide a powerful tool for historical reconstruction of low oxygen conditions in seasonal hypoxia areas.

Multi radium isotopes to assess hydrodynamics and retention effect of river-reservoir systems: Radioactive tracer techniques may be useful for assessing water transport and the overall effects of concurrent biogeochemical processes in river-reservoir systems. Results show that radium isotopes can assess the hydrodynamics and sediment/nutrient retention in the Xiaolangdi Reservoir, the largest impoundment along the Yellow River, China. Activity ratios of 226Ra/224Ra and 223Ra/224Ra were used for water mass ‘age’ calculations in the riverine, transition and lentic reaches of the reservoir. Water ages were combined with the length scale of three river-reservoir zones to determine water transport rates of 3.6±1.2, 1.3±0.3, and 0.16±0.14 km/day, respectively. Radium ages were also used to quantify the net retention of sediment and nutrients in different parts of the river-reservoir system. Suspended sediment was removed at a rate of 1.4±0.6 g/m3/day, mainly in the riverine zone. Nutrient dynamics were more complicated, with addition or removal at different rates within the three zones.

New publications (published or in press)

- Hong, Q.Q., Cai, P.H., Geibert, W. Zhimian Cao, Ingrid Stimac, Lingfeng Liu, Qing Li (2018), Benthic fluxes of trace metals into the Pearl River Estuary based on 224Ra/228Th disequilibrium: From alkaline earth elements (Ba) to redox sensitive metals (U, Mn, and Fe). Geochemica et Cosmochimica Acta, 237, 223-239.

• Wang, Z.W., Ren, J.L., Xuan, J.L., Li, F.M., Yang, T.T., & Guo, Y. Processes controlling the distribution and cycling of dissolved manganese in the northern South China Sea. Marine Chemistry, 2018, 204, 152–162.

Cruises

• Two cruises in Xiaolitian Reservoir in May and September 2018.

• One cruise in Yellow Sea and East China Sea in June 2018.

• Three cruises in the Yangtze River estuary in March, July and August 2018.

First GEOTRACES-China Section Cruise (GP09): 25 April - 10 June 2019. Cruise chief scientists: Yihua Cai and Kuanbo Zhou (Xiamen University). Departed from Xiamen, China. R/V “TAN KAH KEE” (Jia-Geng). The major objectives are (1) To investigate the horizontal and vertical distribution of trace elements and their isotopes (e.g., Fe, Cu, Ni, REEs, etc) in the western North Pacific (wNP); (2) To identify the source/sink and internal cycle of trace elements/micro-nutrients in the wNP and their coupling with macro-nutrients; and (3) To examine the relation of trace element cycling in the wNP to the oceanic carbon cycle and global environmental and climatic change. Cruise website: http://geotraces.xmu.edu.cn
New projects and/or funding

- NSFC project, Using multi-isotopes to study the contribution of Submarine Groundwater Discharge to hypoxia formation off the Yangtze River Estuary, 41876075, 2019.01-2022.12.

PhD theses

Meetings

- A Training Workshop on Metal Speciation and Isotopes in the Ocean for GEOTRACES and Beyond, May 12-17, 2018 Xiamen China. Lecturers and instructors: George Luther III, Edward Boyle, William Sunda, Mustafa Yucel, Xiangkun Zhu, Yihua Cai, Zhimian Cao, Minhan Dai, Kunming Xu, Deli Wang, Xinyuan Zheng, Kuanbo Zhou.
- The Fourth Xiamen Symposium on Marine Environmental Sciences, Xiamen, China, January 6th-9th, 2019 with C3-Bio-GEOTRACES: Trace metals & microbes: The role of trace metals in controlling structure and function of microbial communities in contemporary oceans. The conveners are Punyasloke Bhadury (Indian Institute of Science Education and Research Kolkata, India), Yeala Shaked (The Hebrew University of Jerusalem, Israel), Maria Maldonado (The University of British Columbia, Canada), Yihua Cai (Xiamen University, China), Chris Bowler (Ecole Normale Supérieure, France).

Submitted by Liping Zhou (lpzhou@pku.edu.cn).