Slovenia

Meetings
Participation at the Workshop “The ocean chemistry of bioactive trace elements and paleoclimate proxies” May 29 to June 1, 2012, Geel, Belgium (L. Benedik – acting as an invited speaker, M. Vahčič as a participant).

Cruises
Participation of J. Kotnik, M. Vahčič and A. Bratkič on the FENICE 2012 cruise in W Mediterranean led by F. Sprovieri (CNR-IIA, Italy) from August 11 to August 29 2012. The cruise was organized within the EU project GMOS (Global Mercury Observation Systems). The activities were related to the cycling of Hg species in marine environment including deep water profiles of dissolved gaseous Hg (DGM), total (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. All these analysis are still in progress.

New results
Results obtained during the James Cook cruise represent a part of PhD study of A. Bratkič entitled: “Mercury biotransformations in marine environments” defended in July 2013. All Hg speciation analyses were performed at the Department of Environmental Sciences at Jožef Stefan Institute under the supervision of M. Horvat.

The primary goal of the South Atlantic Ocean expedition was to perform Hg speciation analysis in ocean water at very high vertical and spatial frequency, which would indicate whether Hg transformation in the deep sea is a more active process than is currently reported. Secondary goals were to apply new strategies for sample storage and transport; and to obtain all the necessary supporting data on nutrients and physico-chemical parameters which could help with the interpretation of the data.

Oceanographic sampling for Hg speciation was demanding from the logistical point of view and particular attention was given to the issues of storage and transport of samples. During the time of storage and transport, samples never thawed, which contributed to the results being accurate and representative of the actual environmental conditions. The combination of freezers and dry ice proved to be sufficient for the safe transport of samples to the laboratory, where they could be stored in freezers with an uninterruptible power supply. Particularly useful was simple, but efficient double packing in zip-lock plastic bags. Besides preventing contamination of the bottles, they also prevented some physical damage to them.

The South Atlantic Ocean cruise from South Africa to Uruguay along the 40°S parallel resulted in a remarkably high spatial (both vertical and horizontal) frequency of Hg speciation measurements. Up to 24 depths per station were measured, which was indeed an above average number of sampling depths in this region, and in the ocean in general.

Total Hg (THg) profiles indicated a possible increase in deep waters as a result of the geothermal activity of the Mid-Atlantic Ridge. THg values were lower in the uppermost water layers, suggesting degassing of Hg⁰ to the atmosphere. This is globally important because the large ocean surface represents a great potential flux of Hg⁰ to the atmosphere. Even small changes in conditions that would affect dissolved gaseous mercury (DGM) formation in the ocean would also result in regionally significant Hg evasion or retention.

THg values in seawater were higher off the coast of South America, probably due to the influence of large cities and transport by the Rio de la Plata. The Argentine Basin also showed an increase.

Interestingly, water masses could be distinguished by DGM content, but not by THg. Upper Circumpolar Deep Water (UCDW) mass in the South Atlantic had higher DGM concentrations than North Atlantic Deep Water (NADW). Higher values in the Argentine
Basin were unexpected, but might easily be explained by higher DGM solubility under high pressure, or might result from a Hg increase in newly formed Antarctic Bottom Water (AABW). Moreover, surface DGM distribution closely resembled that of Chl a (and hence photosynthetic organisms), but not of the bacterial community. This suggested that DGM might be formed principally by photosynthetic microbes and algae without the mer operon, and not by mer containing heterotrophic microbes. In addition, merA was not detected, but that was likely a consequence of unsuitable oligonucleotides which did not cover the marine merA diversity.

Methyl mercury (MeHg) concentrations were often below the limit of detection. Nevertheless, MeHg is formed in the South Atlantic Ocean water column as there were no increases of this species above the sediment or in the surface waters, where aerial deposition might be a source. The general decrease formed at the surface might be indicative of photodemethylation. In two instances MeHg coincided with the Chl a peak, which might be indicative that its formation is connected with primary production. Bacterial and archaeal 16S rRNA sequences were detected at all depths at one deep ocean station; therefore it is likely that heterotrophic activity contributes to the observed MeHg levels.

Dimethy methyl mercury (DMeHg) was measured only at one station. As expected, it was higher below 1000 m and very low above that depth, especially in the surface waters. It reached its highest concentration in UCDW, similarly to DGM, probably due to lower oxygen concentrations and hence lower oxidation potential.

Figure 1. DGM concentrations for the whole water column from JC068 South Atlantic cruise (40°S parallel). Black dots represent sampling depths. Distinct layering of DGM can be observed. Deep waters in the Argentine Basin were characterized by the highest DGM values measured during the cruise.

In order to understand Hg biogeotransformations in the South Atlantic Ocean better, more sampling campaigns with such resolution are needed. The deep ocean is very important where Hg cycling is probably more intensive than is generally accepted.

Other activities
S. Tamše obtained GEOTRACES fellowship to perform his research on stable isotope composition of N and O in nitrates in marine samples. The research was conducted at the
Laboratoire de Glaciologie et Géophysique de l’Environnement (CNRS/UJF), Grenoble, France during September 3 to October 26 2012.

Publications

Original scientific article

Book chapter

Scientific conference contribution

Technical Report

Submitted by: Nives Ogrinc